Чем_объясняется_высокая_электропроводность_металлов

Чем_объясняется_высокая_электропроводность_металлов

Электропроводность металлов

При воздействии на металл электрического (или магнитного) поля (или разности температур) в нем возникают потоки заряженных частиц и энергии.

Явления возникновения этих потоков или токов принято называть кинетическими эффектами или явлениями переноса, иначе — транспортными эффектами, имея в виду воздействие стационарных полей на неподвижные проводники. В таком случае ток или поток пропорционален разности потенциалов (или разности температур), а коэффициент пропорциональности определяется только геометрическими размерами проводника и физическими свойствами самого металла.

При единичных геометрических размерах этот коэффициент зависит только от свойств данного металла и является его фундаментальной физической характеристикой, которая носит название кинетического коэффициента. При нахождении проводника в переменном поле возникающие в нем токи зависят не только от геометрических размеров и кинетического коэффициента, но и от частоты переменного поля, формы проводника, взаимного расположения элементов электрической цепи.

Сопротивление проводника при переменном токе существенно зависит от его частоты, обусловленной спинэффектом — вытеснением тока из центра проводника на периферию. Из многих возможных кинетических явлений наиболее известны в технике два: электропроводность — способность вещества проводить постоянный электрический ток под действием не изменяющегося во времени электрического поля, и теплопроводность — аналогично по отношению к разности температур и тепловому потоку. Оба эти явления выражаются (количественно) законами Ома и Фурье соответственно:

где j — плотность тока, А/м;

γ — кинетический коэффициент электрической проводимости);

Е — напряженность электрического поля В/м;

ω — плотность теплового полтока;

Т – разность температур;

k – коэффициент теплопроводности.

На практике обычно используют удельное электрическое сопротивление или просто удельное сопротивление, Ом м

Однако, для проводников разрешается пользоваться внесистемной единицей измерения Ом мм2/м, или рекомендуется применять равную по размерности единицу СИ мкОм/м. Переход от одной единицы к другой в этом случае: 1 Ом м = 10 6 мкОм м = 10 6 Ом мм2/м.

Сопротивление проводника произвольных размеров с постоянным поперечным сечением определятся:

где l – длина проводника, м;

S – площадь проводника, м2.

Металлы обычно характеризуются как вещества пластичные с характерным «металлическим» блеском, хорошо проводящие электрический ток и теплоту.

Для электропроводности металлов типичны: низкое значение удельного сопротивления при нормальной температуре, значительный рост сопротивления при повышении температуры, достаточно близкий к прямой пропорциональности; при понижении температуры до температуры, близких к абсолютному нулю, сопротивление металлов уменьшается до очень малых значений, составляющих для наиболее чистых металлов до 10-3 или даже меньшую долю сопротивления при нормальных, + 20 0С, температурах.

Для них также характерно наличие связи между удельной электропроводностью и удельной теплопроводностью, которая описывается эмпирическим законом Видемана – Франца, как отношение k / γ приближенно одинаково для разных материалов при одинаковой температуре. Частное от деления k / γ на абсолютную температуру T (L0 = k / (γ T)). называется числом Лоренца, является (для всех металлов) величиной мало отличающихся при всех температурах.

Теория кинетических явлений в металлах может объяснить форму зависимостей кинетических коэффициентов от температуры, давления и других факторов, с ее помощью также можно вычислить и их значения. Для этого рассмотрим внутреннее строение металлов.

Фундаментальная идея этого раздела физики возникла на рубеже 19 –20 го столетия: атомы металла ионизированы, а отделившиеся от них валентные электроны свободны, т. е. принадлежат всему кристаллу.

Ионы строго упорядочены, образуют правильную кристаллическую решетку; их взаимодействие с отрицательно заряженным облаком свободных электронов такое, что делает кристалл стабильным, устойчивым образованием.

Наличие свободных электронов хорошо объясняет высокую электропроводность металлов, а их делокализация обеспечивает высокую пластичность. Значит, наиболее характерной особенностью внутреннего строения металлических проводников является наличие коллективизированных электронов, что подтверждает их электронное строение. В ее простейшей модели совокупность коллективизированных электронов объясняют как электронный газ, в котором частицы находятся в хаотическом тепловом движении.

Равновесие устанавливается (если пренебречь столкновениями между электронами) за счет столкновения электронов с ионами. Поскольку тепловое движение полностью не упорядочено, то, несмотря на заряженность электронов, тока в цепи (макроскопического) не наблюдается. Если к проводнику приложить внешнее электрическое поле, то свободные электроны, получив ускорение, выстраиваются в упорядоченную составляющую, которая ориентирована вдоль поля.

Читайте также:  Салат_курица_сельдерей_огурец

Поскольку ионы в узлах решетки неподвижны, упорядоченность в движении электронов проявится макроскопическим электрическим током. Удельная проводимость в этом случае может быть выражена с учетом средней длины свободного пробега λ электрона в ускоряющем поле напряженностью Е:

λ = е Е τ / (2 m) как γ = е2 n λ / (2 m vτ),

где е — заряд электрона;

n — число свободных электронов в единице объема металла;

λ — средняя длина свободного пробега электрона между двумя соударениями;

m — масса электрона;

v τ- средняя скорость теплового движения свободного электрона в металле.

С учетом положений квантовой механики

где К — числовой коэффициент.

Диапазон удельных сопротивлений металлических проводников при нормальной температуре занимает всего три порядка. Для различных металлов скорости хаотического теплового движения электронов при определенной температуре примерно одинаковы.

Концентрации свободных электронов различаются незначительно, поэтому значение удельного сопротивления в основном зависит от средней длины свободного пробега электронов в данном проводнике, а она определяется структурой материала проводника. Все чистые металлы с наиболее правильной кристаллической решеткой имеют минимальные значения удельного сопротивления. Примеси, искажая решетку, приводят к увеличению удельного сопротивления

Температурный коэффициент удельного сопротивления или средний температурный коэффициент удельного сопротивления выразится

α = 1 / ρ (dρ / dt); α` = 1 / ρ (ρ2 — ρ1) / (T2 – T1),

где ρ1 и ρ2 – удельные сопротивления проводника при температурах Т1 и Т2 соответственно при Т2 > T1.

В технических справочниках обычно приводится величина α`, с помощью которой можно приближенно определить ρ при произвольной температуре Т:

ρ = ρ1 (1 + αρ` (Т — Т1)).

Это выражение дает точное значение удельного сопротивления р только для линейной зависимости ρ(Т). В остальных случаях этот метод является приближенным; он тем точнее, чем уже интервал температур, который использован для определения αρ`.

Удельное сопротивление большинства металлов, увеличивающих свой объем при плавлении, уменьшает плотность. У металлов, уменьшающих свой объем при плавлении, удельное сопротивление уменьшается; к таким металлам относят галлий, сурьму и висмут.

Удельное сопротивление сплавов всегда больше, чем у чистых металлов. Особенно это заметно, если при сплавлении они образуют твердый раствор, т.е. совместно кристаллизуются при затвердевании и атомы одного металла входят в решетку другого.

Если сплав двух металлов создает раздельную кристаллизацию и застывший раствор — смесь кристаллов каждой из составляющих, то удельная проводимость γ такого сплава изменяется с изменением состава почти линейно. В твердых же растворах эта зависимость (от содержания каждого из металлов) не линейна и имеет максимум, соответствующий определенному соотношению компонентов сплава.

Иногда при определенном соотношении между компонентами они образуют химические соединения (интерметаллиды), при этом они обладают не металлическим характером электропроводности, а являются электронными полупроводниками.

Температурный коэффициент линейного расширения проводников определяется так же, как и для диэлектриков по формуле

ТКl = α(l) = l / l (dl / dТ), (3.1)

где ТКl = α(l) -температурный коэффициент линейного расширении К-1

Этот коэффициент необходимо знать, чтобы иметь возможность оценить работу сопряженных материалов в различных конструкциях, а также исключить растрескивание или нарушение вакуумного соединения металла со стеклом или керамикой при изменении температуры. Кроме того, он входит в расчет температурного коэффициента электрического сопротивления проводов

ТКR = α(R) = α(ρ) — α(l).

ТермоЭДС возникает при соприкосновении двух различных проводников ( или полупроводников), если температура их спаев неодинакова. Если два различных проводника соприкасаются, то между ними возникает контактная разность потенциалов. Для металлов А и В

Ucb — Uc + К Т / е ln(n0с / nоb),

где U с и U b — потенциалы соприкасающихся металлов; концентрация электронов в соответствующих металлах;

К — постоянная Болъцмана;

е — абсолютная величина заряда электрона.

Если температура спаев металлов одинакова, то сумма разности потенциалов в замкнутой цепи равна нулю. Если же температура слоев различна (Т2 и Т1, например ), то в этом случае

U = К / е (Т1 -Т2) ln(nc / пb). (3.2)

На практике выражение (3.2) не всегда соблюдается, и зависимость термоЭДС от температуры может быть нелинейной. Провод, составленный из двух изолированных проволок разных металлов или сплавов, называется термопарой и используется для измерения температур.

Читайте также:  Теплофон_эргна_с_терморегулятором

В таких случаях стараются использоватъ материалы, имеющие большой и стабильный коэффициент термоЭдС. для измерения высоких температур иногда приходится (особенно при измерении температур в агрессивных средах) применять термопары с меньшими коэффициентами термо ЭдС, но выдерживающими высокие температуры и не окисляющиеся в агрессивных средах.

Во многих случаях термопары приходится защищать металлическими или керамическими кожухами. Катушки измерительных приборов, добавочные резисторы и шунты в них приходится подбирать с минимальными коэффициентами термоЭдС относительно меди, чтобы избежать появления паразитных термоЭдС. которые могут вызвать дополнительные погрешности измерения.

Сплавы для термопар имеют различные сочетания, в том числе один электрод может быть из чистого металла. Наиболее распространенными являются никелевые и медно-никелевые сплавы. Для температур в пределах 1000 – 1200 0С используются термопары хромель – алюмель (ТХА), при более высоких температурах применяются электроды платина – платинородий; в этих сплавах родия составляет от 6,7 до 40,5 %. Марки таких термопар следующие: ПлРд-7, ПлРд-10, ПлРд-30, ПлРд-40.

Дата добавления: 2015-02-19 ; просмотров: 1773 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Срочно помогите дою 40 баллов
А1. Электропроводность металлов объясняется:
А) размерами атомов металлов;
Б) наличием свободных электронов;
В) пластичностью металлов;
Г) наличием в кристаллической решетке и катионов, и нейтральных атомов металла.

А2. Более сильным восстановителем, чем алюминий, будет:
А) B;
Б) Mg;
В) Si;
Г) C.

А3. При взаимодействии натрия с водой образуются:
А) гидроксид натрия и кислород;
Б) только гидроксид натрия;
В) оксид натрия и водород;
Г) гидроксид натрия и водород.

А4. В ряду Na2O → MgO → Al2O3 происходит изменение свойств оксидов:
А) от основных к кислотным;
Б) от основных к амфотерным;
В) от кислотных к основным;
Г) от амфотерных к основным.

А5. Элемент, необходимый для нормального роста растений и входящий в состав многих минеральных удобрений:
А) хлор;
Б) калий;
В) алюминий;
Г) литий.

А6.Взаимодействие возможно между парой веществ:
А) Cu и Mg(NO3)2;
Б) Hg и HCl;
В) Al и H2SO4 (разб.);
Г) Fe и CaCl2.

А7.Временная жесткость воды обусловлена наличием ионов:
А) Са2+, Mg2+, Cl-;
Б) Ca2+, Mg2+, HCO3- ;
В) Ca2+, Mg2+, SO42-;
Г) Ca2+, Mg2+, NO3-.

А8.Гидроксид алюминия будет взаимодействовать со всеми веществами группы:
А) HCl, NaOH, NaNO3;
Б) H2SO4, KOH, HCl;
В) HNO3, Cu(OH)2, KOH;
Г) HCl, LiOH, K2SO4.

А9. Доказать наличие ионов Fe2+ в растворе можно действием:
А) HCl;
Б) KOH;
В) NaNO3;
Г) H2SO4.

А10. В состав гемоглобина крови входят катионы:
А) железа;
Б) кальция;
В) меди;
Д) натрия.

Электропроводность металлов. Виды электропроводности

Электрическая проводимость металлов — это способность элементов и тел проводить через себя определенное количество негативно заряженных частиц. Само проведение электрического тока объясняется достаточно просто — в результате воздействия электромагнитного поля на проводниковый металл, электрон настолько ускоряет свое движение, что теряет связь с атомом.

В Международной системе измерения единиц электропроводность значится буквой S и измеряется в сименсах.

В зависимости от вида и природы зарядоносителей проводимость бывает электронной, ионной и дырочной. Электронной проводимостью обладают металлы. Существует такая проводимость и в верхних слоях атмосферы, где плотность вещества невелика, благодаря чему электроны могут свободно перемещаться, не соединяясь с положительно заряженными ионами.Жидкие электроны обладают ионной проводимостью. Ионы, являющиеся зарядоносителями, при движении перемещают вещество, в результате чего происходит выделение его на электродах.Возможен механизм проводимости, обусловленный разрывом валентной связи, приводящим к появлению вакантного места с отсутствующей связью. Такое “пустое” место с отсутствующими электронами связи получило название — дырка. Возникновение дырки в кристалле проводника создаёт дополнительную возможность для переноса заряда. Этот процесс, сопровождающийся перемещением электронов, получил название дырочной проводимостью.

Электропроводность металлов. Виды электропроводности. Уровень Ферми.

В зависимости от вида и природы зарядоносителей проводимость бывает электронной, ионной и дырочной.

Электронной проводимостью обладают металлы.

Жидкие вещества обладают ионной проводимостью. Ионы, являющиеся зарядоносителями, при движении перемещают вещество, в результате чего происходит выделение его на электродах.

Читайте также:  Видеодомофон_своими_руками_из_планшета

Возможен механизм проводимости, обусловленный разрывом валентной связи, приводящим к появлению вакантного места с отсутствующей связью. Такое “пустые” место с отсутствующими электронами связи получило название — дырка. Возникновение дырки в кристалле проводника создаёт дополнительную возможность для переноса заряда. Этот процесс, сопровождающийся перемещением электронов, получил название дырочной проводимостью.

Проводниками электрического тока могут служить твердые тела, жидко­сти, а при соответствующих условиях и газы.

К твердым проводникам относят металлы, металлические сплавы и некоторые модификации углерода.

Металлы – это пластичные вещества с характерным для них блеском, которые хорошо проводят электрический ток и теплоту. Среди материалов электронной техники металлы занимают одно из важнейших мест.

К жидким проводникам относятся расплавленные металлы и различные электролиты. Как правило температура плавления металла высока, за исключе­нием ртути (Hg), у которой она составляет -39°C. Поэтому при нормальной температуре в качестве жидкого металлического проводника можно использо­вать только ртуть. Температуру близкую к нормальной (29,8°С) имеет еще галлий (Ga). Другие металлы являются жидкими проводниками только при повышенных или высоких температурах.

Механизм прохождения тока по металлам в твердом и жидком состояниях обусловлен движением свободных электронов. Поэтому их называют проводниками с электронной электропроводностью или проводниками первого рода.

Электролитами, или проводниками второго рода являются растворы (в основном водные) кислот, щелочей и солей, а также расплавы ионных соединений. Прохождение токов через такие проводники связано с переносом вместе с электрическими зарядами частей молекул (ионов). В результате этого состав электролита постепенно изменяется, а на электродах выделяются продукты электролиза.

Все газы и пары, в том числе и пары металлов, при низких напряженностях электрического поля ток не проводят. Однако, если напряженность поля выше некоторого критического значения, обеспечивающего начало ударной и фотоионизации, то газ может стать проводником, обладающим электронной и ионной электропроводностью. Сильно ионизированный газ при равенстве числа электронов и положительных ионов в единице объема представляет собой равновесную проводящую среду, называемую плазмой.

В основе классической электронной теории металлов, развитой Друде и Лоренцом, лежит представление об электронном газе, состоящем из свободных электронов. Электронному газу приписываются свойства идеального газа, т.е. движение электронов подчиняется законам классической статистики

В случае приложения внешнего напряжения электроны получат некоторую добавочную скорость направленного движения в направлении действующих сил поля, благодаря чему и возникает электрический ток.

В процессе направленного движения электроны сталкиваются с атомами узлов решетки. При этом скорость движения замедляется, а затем под воздействием электрического поля ускоряются:

Наличием свободных электронов обусловливается и высокая теплопроводность металлов. Находясь в непрерывном движении, электроны постоянно сталкиваются с ионами и обмениваются с ними энергией. Поэтому колебания ионов, усилившиеся в данной части металла вследствие нагревания, сейчас же передаются соседним ионам, от них — следующим и т.д., и тепловое состояние металла быстро выравнивается; вся масса металла принимает одинаковую температуру.

Теплопроводность можно определить, как свойство вещества проводить (передавать) тепловой поток под действием не изменяющейся во времени разности температур.

Энергия Ферми EF — максимальное значение энергии, которое может иметь электрон при температуре абсолютного нуля. Энергия Ферми совпадает со значениями химического потенциала газа фермионов при Т =0 К, то есть уровень Ферми для электронов играет роль уровня химического потенциала для незаряженных частиц. Соответствующий ей потенциал jF = EF называют электрохимическим потенциалом.

Таким образом, уровнем Ферми или энергией Ферми в металлах является энергия, которую может иметь электрон при температуре абсолютного нуля. При нагревании металла происходит возбуждение некоторых электронов, находящихся вблизи уровня Ферми (за счет тепловой энергии, величина которой порядкаkT). Но при любой температуре для уровня с энергией, соответствующей уровню Ферми, вероятность заполнения равна 1/2. Все уровни, расположенные ниже уровня Ферми, с вероятностью больше 1/2 заполнены электронами, а все уровни, лежащие выше уровня Ферми, с вероятностью больше 1/2 свободны от электронов.

Существование энергии Ферми является следствием принципа Паули. Величина энергии Ферми существенно зависит от свойств системы.

Ссылка на основную публикацию
Чем_можно_очистить_монтажную_пену_с_одежды
Как убрать монтажную пену с одежды Монтажную пену используют в различных целях. Этот материал позволяет утеплить помещение, улучшить звукоизоляцию, избавиться...
Чем_заправлять_вейп_если_нет_жижи
Чем можно заправить вейп, если нет жидкости Поклонникам парения изготовители электронных курительных устройств представляют обширный выбор различных жидкостей, отличающихся вкусами,...
Чем_заряжать_18650_аккумулятор
rn3qbh › Блог › Бокс для зарядки аккумулятора 18650 за 5 минут Всем привет!Достался мне на запчасти ноутбук… Матрица пошла...
Чем_можно_покрасить_газовый_котел
Методы покраски газовой плиты: полностью своими руками в домашних условиях Здравствуйте, уважаемые читатели. Чем покрасить плиту газовую? Этот вопрос волнует...
Adblock detector