Формула_для_определения_объема

Формула_для_определения_объема

Объем фигур

Многие сложные детали (конструкции) можно представить совокупностью различных элементов, объем которых можно вычислить, воспользовавшись набором online-калькуляторов с данной страницы.

Представлены программы для расчета объемов фигур, базисом которых является квадрат или прямоугольник, а также имеющих в основании окружность: цилиндра, конуса и шаровых элементов.

В конструкторской работе при различных расчетах возникает потребность использования значений объема элементарных фигур: параллелепипеда, куба, призмы и пр. В частности это может иметь место при расчете заполнения вагонов и платформ упакованной в транспортную тару готовой продукцией. Такой расчет требует учета многих факторов, в том числе боковой ветровой нагрузки, смещения центра тяжести и пр.

Если неправильно рассчитать объем тары подлежащего отгрузке упакованного товара, можно не вместить в вагон заявленное количество изделий. В результате предприятие потерпит убытки. Онлайн калькуляторы нашего сайта позволят избежать проблемных ситуаций. Расчеты объемов различных фигур выполняются с большой точностью.

Объем геометрических фигур

Рассчитывает объем геометрических фигур (куб, призма, пирамида, усеченная пирамида, конус, цилиндр, сфера, эллипсоид, тороид).

Данная статья содержит калькуляторы для расчета объема различных геометрических фигур. Основной источник формул: Spiegel, Murray R. Mathematical Handbook of Formulas and Tables. Schaum’s Outline series in Mathematics. McGraw-Hill Book Co., 1968.

Объем куба

Размеры куба

Формулы объема

Объём геометрической фигуры — количественная характеристика пространства, занимаемого телом или веществом. В простейших случаях объём измеряется числом умещающихся в теле единичных кубов, т. е. кубов с ребром, равным единице длины. Объём тела или вместимость сосуда определяется его формой и линейными размерами.

Формула объема куба

1) Объем куба равен кубу его ребра.

V — объем куба

H — высота ребра куба

Формула объема пирамиды

1) Объем пирамиды равен одной трети произведения площади основания S (ABCD) на высоту h (OS).

Читайте также:  Чем_пропитывать_разделочную_доску

V — объем пирамиды

S — площадь основания пирамиды

h — высота пирамиды

Формулы объема конуса

1) Объем конуса равен одной трети произведения площади основания на высоту.

2) Объем конуса равен одной трети произведения числа пи (3.1415) на квадрат радиуса основания на высоту.

V — объем конуса

S — площадь основания конуса

h — высота конуса

π — число пи (3.1415)

r — радиус конуса

Формулы объема цилиндра

1) Объем цилиндра равен произведению площади основания на высоту.

2) Объем цилиндра равен произведению числа пи (3.1415) на квадрат радиуса основания на высоту.

V — объем цилиндра

S — площадь основания цилиндра

h — высота цилиндра

π — число пи (3.1415)

r — радиус цилиндра

Формула объема шара

1) Объем шара вычисляется по приведенной ниже формуле.

V — объем шара

π — число пи (3.1415)

R — радиус шара

Формула объема тетраэдра

1) Объем тетраэдра равен дроби в числителе которой корень квадратный из двух помноженный на куб длины ребра тетраэдра, а в знаменателе двенадцать.

Ссылка на основную публикацию
Флорариум_своими_руками_для_начинающих_фото_пошагово
85+ идей флорариума своими руками (фото) За таким необычным экстравагантным названием скрывается не менее экстравагантная альтернатива стандартным пластиковым горшкам для...
Фен_для_пайки_своими_руками_видео
Паяльный фен из обычного паяльника (лайфхак) В этой инструкции вы узнаете, как сделать паяльный фен своими руками, используя самый обычный...
Фен_ровента_с_насадками
Фены Rowenta В тот момент, когда вы понимаете, что времени привести себя в порядок перед работой совсем не остается, фен...
Флористическая_губка_чем_заменить_в_домашних_условиях
Губка для цветочных композиций, где взять, как использовать, чем заменит Флористическая губка – это один из основных компонентов цветочной композиции....
Adblock detector