Как_определить_полосу_пропускания_усилителя

Как_определить_полосу_пропускания_усилителя

Динамический диапазон усиления — диапазон амплитудной характеристики, на котором увеличение входного сигнала вызывает пропорциональное увеличение сигнала на выходе (рис. 3, зона II)

.

Полоса пропускания усилителя – это диапазон частот, в пределах которого изменение коэффициента усиления не превышает заданной величины (рис. 6).

Полосу пропускания Df определяют на амплитудно-частотной характеристике, построенной как зависимость коэффициента усиления от частоты К=F(f). Допустимым уровнем уменьшения коэффициента усиления для усилителей низкой частоты принято считать на нижней fH и верхней fВ частотах полосы пропускания KН =KB =0,707КО (по допустимым коэффициентам частотных искажений МНВ=). Здесь KН, KB, КО — коэффициенты усиления на нижней, верхней и средней частотах полосы пропускания.

Рис. 6. Определение полосы пропускания усилителя низкой частоты.

К параметрам усилителей относят и различные искажения сигнала. Искажения бывают частотные, фазовые, нелинейные.

Частотные искажения определяют коэффициентами частотных искажений на верхней и нижней частотах МВ и МН

,

,

tВ и tН – постоянные времени, зависящие от элементов схемы усилителя, влияющих на частотные искажения на верхних или нижних частотах.

Определим постоянные времени tВ и tН для однокаскадного усилителя с общим эмиттером (рис. 7)

где tb – постоянная времени, зависящая от граничной частоты усиления транзистора fb,

;

tK – постоянная времени, зависящая от емкости СК коллекторного перехода транзистора;

,

где rK – дифференциальное сопротивление закрытого коллекторного перехода,

Рис. 7. Однокаскадный усилитель с общим эмиттером.

Таким образом, на частотные искажения на верхних частотах МВ влияют усилительный прибор – транзистор своими параметрами fb, CK и rK и элементы схемы RK и RH.

На нижней частоте wН на частотные искажения МН будут влиять конденсаторы СР, СЭ и СС, так как реактивное сопротивление конденсатора хС=1/wС и с уменьшением рабочей частоты хС будет увеличиваться и конденсаторы будут оказывать все большее влияние:

где tНСр – постоянная времени, зависящая от емкости конденсатора СР, величины сопротивления источника входного сигнала RГ и сопротивления , — входное сопротивление транзистора; rБ – удельное сопротивление базы, rЭ — дифференциальное сопротивление открытого эмиттерного перехода; b— коэффициент усиления транзистора;

Зная МН и МВ, можно рассчитать коэффициенты усиления и .

Определив частотные искажения МВ и МН для однокаскадного усилителя, можно найти МВ и МН для многокаскадного усилителя:

Таким образом, создавая многокаскадный усилитель и добиваясь как можно большего КОБЩ., не нужно забывать что частотные искажения будут увеличиваться по такой же зависимости.

Фазовые искаженияразличны на верхней и нижней частотах:

Нелинейные искажения возникают при работе усилительного прибора на нелинейных участках вольт-амперной характеристики. Оценивают нелинейные искажения коэффициентом нелинейных искажений g или клирфактором

,

где U2, U3. Un — амплитуды высших гармонических составляющих в выходном напряжении UВЫХ, появление которых вызвано отличием его формы от синусоидальной;

U1 — амплитуда первой (основной) гармоники сигнала.

Коэффициент полезного действия усилителя

,

где PВЫХ — мощность, выделяемая в нагрузке усилителя;

P— мощность, потребляемая от источника питания.

  • АлтГТУ 419
  • АлтГУ 113
  • АмПГУ 296
  • АГТУ 266
  • БИТТУ 794
  • БГТУ «Военмех» 1191
  • БГМУ 172
  • БГТУ 602
  • БГУ 153
  • БГУИР 391
  • БелГУТ 4908
  • БГЭУ 962
  • БНТУ 1070
  • БТЭУ ПК 689
  • БрГУ 179
  • ВНТУ 119
  • ВГУЭС 426
  • ВлГУ 645
  • ВМедА 611
  • ВолгГТУ 235
  • ВНУ им. Даля 166
  • ВЗФЭИ 245
  • ВятГСХА 101
  • ВятГГУ 139
  • ВятГУ 559
  • ГГДСК 171
  • ГомГМК 501
  • ГГМУ 1967
  • ГГТУ им. Сухого 4467
  • ГГУ им. Скорины 1590
  • ГМА им. Макарова 300
  • ДГПУ 159
  • ДальГАУ 279
  • ДВГГУ 134
  • ДВГМУ 409
  • ДВГТУ 936
  • ДВГУПС 305
  • ДВФУ 949
  • ДонГТУ 497
  • ДИТМ МНТУ 109
  • ИвГМА 488
  • ИГХТУ 130
  • ИжГТУ 143
  • КемГППК 171
  • КемГУ 507
  • КГМТУ 269
  • КировАТ 147
  • КГКСЭП 407
  • КГТА им. Дегтярева 174
  • КнАГТУ 2909
  • КрасГАУ 370
  • КрасГМУ 630
  • КГПУ им. Астафьева 133
  • КГТУ (СФУ) 567
  • КГТЭИ (СФУ) 112
  • КПК №2 177
  • КубГТУ 139
  • КубГУ 107
  • КузГПА 182
  • КузГТУ 789
  • МГТУ им. Носова 367
  • МГЭУ им. Сахарова 232
  • МГЭК 249
  • МГПУ 165
  • МАИ 144
  • МАДИ 151
  • МГИУ 1179
  • МГОУ 121
  • МГСУ 330
  • МГУ 273
  • МГУКИ 101
  • МГУПИ 225
  • МГУПС (МИИТ) 636
  • МГУТУ 122
  • МТУСИ 179
  • ХАИ 656
  • ТПУ 454
  • НИУ МЭИ 641
  • НМСУ «Горный» 1701
  • ХПИ 1534
  • НТУУ «КПИ» 212
  • НУК им. Макарова 542
  • НВ 777
  • НГАВТ 362
  • НГАУ 411
  • НГАСУ 817
  • НГМУ 665
  • НГПУ 214
  • НГТУ 4610
  • НГУ 1992
  • НГУЭУ 499
  • НИИ 201
  • ОмГТУ 301
  • ОмГУПС 230
  • СПбПК №4 115
  • ПГУПС 2489
  • ПГПУ им. Короленко 296
  • ПНТУ им. Кондратюка 119
  • РАНХиГС 186
  • РОАТ МИИТ 608
  • РТА 243
  • РГГМУ 118
  • РГПУ им. Герцена 124
  • РГППУ 142
  • РГСУ 162
  • «МАТИ» — РГТУ 121
  • РГУНиГ 260
  • РЭУ им. Плеханова 122
  • РГАТУ им. Соловьёва 219
  • РязГМУ 125
  • РГРТУ 666
  • СамГТУ 130
  • СПбГАСУ 318
  • ИНЖЭКОН 328
  • СПбГИПСР 136
  • СПбГЛТУ им. Кирова 227
  • СПбГМТУ 143
  • СПбГПМУ 147
  • СПбГПУ 1598
  • СПбГТИ (ТУ) 292
  • СПбГТУРП 235
  • СПбГУ 582
  • ГУАП 524
  • СПбГУНиПТ 291
  • СПбГУПТД 438
  • СПбГУСЭ 226
  • СПбГУТ 193
  • СПГУТД 151
  • СПбГУЭФ 145
  • СПбГЭТУ «ЛЭТИ» 380
  • ПИМаш 247
  • НИУ ИТМО 531
  • СГТУ им. Гагарина 114
  • СахГУ 278
  • СЗТУ 484
  • СибАГС 249
  • СибГАУ 462
  • СибГИУ 1655
  • СибГТУ 946
  • СГУПС 1513
  • СибГУТИ 2083
  • СибУПК 377
  • СФУ 2423
  • СНАУ 567
  • СумГУ 768
  • ТРТУ 149
  • ТОГУ 551
  • ТГЭУ 325
  • ТГУ (Томск) 276
  • ТГПУ 181
  • ТулГУ 553
  • УкрГАЖТ 234
  • УлГТУ 536
  • УИПКПРО 123
  • УрГПУ 195
  • УГТУ-УПИ 758
  • УГНТУ 570
  • УГТУ 134
  • ХГАЭП 138
  • ХГАФК 110
  • ХНАГХ 407
  • ХНУВД 512
  • ХНУ им. Каразина 305
  • ХНУРЭ 324
  • ХНЭУ 495
  • ЦПУ 157
  • ЧитГУ 220
  • ЮУрГУ 306
Читайте также:  Светодиодные_лампы_соотношение_с_лампой_накаливания

Полный список ВУЗов

Чтобы распечатать файл, скачайте его (в формате Word).

О полосе пропускания в цифровой технике см. Скорость передачи информации

Полоса пропускания (прозрачности) — диапазон частот, в пределах которого амплитудно-частотная характеристика (АЧХ) акустического, радиотехнического, оптического или механического устройства достаточно равномерна для того, чтобы обеспечить передачу сигнала без существенного искажения его формы. Иногда вместо термина «полоса пропускания» используют термин «эффективно передаваемая полоса частот (ЭППЧ)». В ЭППЧ сосредоточена основная энергия сигнала (не менее 90 %). Этот диапазон частот устанавливается для каждого сигнала экспериментально в соответствии с требованиями качества.

Содержание

Основные параметры полосы пропускания [ править | править код ]

Основные параметры, которые характеризуют полосу пропускания частот — это ширина полосы пропускания и неравномерность АЧХ в пределах полосы.

Ширина полосы пропускания [ править | править код ]

Ширина полосы пропускания — полоса частот, в пределах которой неравномерность частотной характеристики не превышает заданной.

Ширина полосы обычно определяется как разность верхней и нижней граничных частот участка АЧХ f 2 − f 1 <displaystyle f_<2>-f_<1>> , на котором амплитуда колебаний равняется 1 2 <displaystyle <frac <1><sqrt <2>>>> (или, что эквивалентно 1 2 <displaystyle <frac <1><2>>> для мощности) от максимальной. Этот уровень приблизительно соответствует −3 дБ.

Иногда полосу пропускания определяют также по фазо-частотной характеристике устройства [1] .

Ширина полосы пропускания выражается в единицах частоты (например, в герцах).

В радиосвязи и устройствах передачи информации расширение полосы пропускания позволяет передать большее количество информации.

Неравномерность АЧХ [ править | править код ]

Неравномерность АЧХ характеризует степень её отклонения от прямой, параллельной оси частот.

Неравномерность АЧХ выражается в децибелах.

Ослабление неравномерности АЧХ в полосе улучшает воспроизведение формы передаваемого сигнала.

  • Абсолютную полосу пропускания: 2Δω = Sa
  • Относительную полосу пропускания: 2Δω/ωo = So

Конкретные примеры [ править | править код ]

В теории антенн полоса пропускания — диапазон частот, при которых антенна работает эффективно, обычно окрестность центральной (резонансной) частоты. Зависит от типа антенны, её геометрии. На практике полоса пропускания обычно определяется по заданному уровню КСВ (коэффициента стоячей волны), например, равному 2.

Из определения полосы пропускания видно, что дисперсия накладывает ограничение на дальность передачи и на верхнюю частоту передаваемых сигналов.

Требования к полосе пропускания различных устройств определяются их назначением. Например, для телефонной связи достаточна полоса около 3 кГц (300—3400 Гц), для высококачественного воспроизведения музыкальных произведений — не менее 30—16000 Гц, а для телевизионного вещания — шириной до 8 МГц) [1] .

Требования к полосе пропускания являются неотъемлемой частью обсуждения преобразователя тока в напряжение по нескольким причинам. Общий выходной шум увеличивается пропорционально квадратному корню из полосы пропускания системы, потому что охватывается более широкий спектр шумов. Появляется конфликт между оптимальным соотношением сигнал/шум и полосой сигнала.

Для токового сигнала коэффициент обратной связи усилителя равен единице, и можно использовать всю полосу его единичного усиления. Кроме того, очень большое сопротивление обратной связи, которое дает требуемое усиление, шунтируется паразитной емкостью на очень низкой частоте. Чтобы уменьшить ее влияние, используются резисторы с малой паразитной емкостью и соблюдаются предосторожности при монтаже.

Последнее ограничение, влияющее на измерение таких величин, — емкостная связь через воздух вокруг корпуса резистора — всегда остается. Расширение полосы за пределы, обусловленные такими ограничениями, требует уменьшения сопротивления обратной связи и, следовательно, меньшего усиления преобразователя. Некоторые возможности для восстановления усиления показаны на рис. 2.5. После преобразователя тока в напряжение просто добавляется второй усилитель, который доводит итоговое выходное сопротивление до величины RT = . Таким образом, большое сопротивление уменьшается во столько раз, во сколько раз усиливает усилитель, и во столько же раз увеличивается полоса пропускания.

Несмотря на очевидность такого решения, его влияние на полосу пропускания и шум выражается не так непосредственно. Полоса второго усилителя ограничивает увеличение полосы системы. С увеличением усиления напряжения она сначала увеличивается линейно, так как снижение на резисторе R1 уменьшает влияние паразитной емкости (рис.2.6). Однако увеличение требований к усилителю А2 в конечном итоге превращает полосу усилителя в ограничивающий фактор.

Для данного набора условий существует оптимальное усиление. AV дает максимальную полосу, показанную для трех типов усилителей. Этот максимум проявляется тогда, когда полоса усилителя с замкнутой обратной связью равна ограничению из-за паразитной емкости на резисторе R1.

Рисунок 2.5 — Добавление усиления напряжения для увеличения полосы при сохранении общего сопротивления

Если требуется еще большая полоса пропускания, то надо выбирать между более быстрым операционным усилителем, с худшими, как правило, шумовыми параметрами, и уменьшением сопротивления. Для меньшей полосы пропускания на место усилителя А1 требуется поставить усилитель с меньшей полосой единичного усиления, поэтому можно использовать усилитель с малым шумом.

Рисунок 2.6 — графики зависимости полосы пропускания и входного шума (полоса пропускания увеличивается быстрее, чем шум)

Платой за увеличение полосы пропускания за счет усиления напряжения является увеличение выходного шума, как из-за этого усиления, так и из-за добавления усилителя. В то время как меньшая величина резистора R1 снижает плотность шума, этому эффекту противодействует увеличение полосы пропускания, вплоть до отсутствия изменения итогового шума от резистора, который увеличивается за счет усиления напряжения во втором усилителе, вызывая соответствующее увеличение выходного шума, пропорциональное этому усилению. К этому прибавляется шум операционного усилителя, что также показано на рис. 2.6. В нижнем диапазоне усиления, при коэффициенте от 1 до 10, шум определяется, в первую очередь, операционными усилителями и их максимальным усилением. Также в этом диапазоне полоса пропускания, показанная на рис. 2.6, управляется паразитной емкостью и линейно растет с увеличением усиления из-за соответствующего уменьшения сопротивления. Между коэффициентами усиления 10 и 100 полоса начинает уменьшаться из-за ограничений А2. Одновременно с этим уменьшением наблюдается выравнивание кривой выходного шума. Спад полосы усилителя и одновременное снижение сопротивления сводят к нулю эффект от увеличения усиления напряжения, оставляя выходной шум неизменным. В диапазоне усилений от 100 до 1000 эта тенденция сохраняется, и сигнал становится менее качественным, так как полоса пропускания уменьшается, а шум остается постоянным.

При условии, что допускается ухудшение шума при замене сопротивления на усиление напряжения, достоинства схемы в целом увеличиваются. Если же учитывать полосу пропускания, то это улучшение может компенсировать падение соотношения сигнал/ шум. Ранее упоминалось, что простой преобразователь тока в напряжение больше страдает от излишней полосы пропускания при усилении напряжения шума усилителя, чем при усилении токового сигнала. Эта тенденция устранена в схеме на рис. 2.5, так как усиление напряжения возрастает, и усилитель А2 начинает фильтровать более высокие частоты. В подтверждение этому шумовые кривые, которые нарастают плавно (в отличие от кривых полосы пропускания) до точки оптимальной полосы пропускания. В этой оптимальной точке полоса пропускания шума совпадает с полосой пропускания сигнала. В результате усилитель А1 теперь работает как выходной активный фильтр, обсуждавшийся ранее.

В некоторых случаях серьезным недостатком приведенной схемы является необходимость использования двух операционных усилителей на каждый фотодатчик: часто сотни датчиков работают в одном массиве. Можно применять и один ОУ для получения того же усиления, но без резисторов с очень большим сопротивлением, если окажется приемлемым некоторое ухудшение полосы пропускания и шумов. Один и тот же ОУ может одновременно выполнять преобразование тока в напряжение и последующее усиление напряжения. Согласно традиционной технике, эта задача решается так, как показано на рис. 2.7, a,- где резистор R2 необходим для преобразования тока в напряжение, а резисторы R3 и R4 — для установки усиления по напряжению. Ток из диода течет через резистор, в результате чего на неинвертирующем входе операционного усилителя появляется напряжение сигнала. Однако это напряжение также приложено к фотодиоду, и из-за этого возникает нелинейность, как было описано ранее.

Вместо этого фотодиод подключается непосредственно между входами операционного усилителя, и тогда на нем поддерживается нулевое напряжение. Как показано на рис. 2.7, б, резисторы выполняют те же функции, что и в предыдущей схеме, но передаточная функция схемы будет линейной. Ток из фотодиода также течет через резистор R2, создавая такое же сигнальное напряжение. Этот ток течет и в цепь обратной связи, но дает меньший эффект из-за меньшего сопротивления резисторов.

a — влияние нежелательного напряжения на диоде;

б — устранение влияния при помощи подключения диода между входами операционного усилителя.

Рисунок 2.7 — Одновременное преобразование тока в напряжение и усиление по напряжению на одном операционном усилителе

Здесь добавляется небольшая составляющая, возникающая из-за того, что удален операционный усилитель как источник повышения усиления. Однако новый источник включен на рис. 2.7,б, снова из-за емкости диода, как показано на рис. 2.8,а. Напряжение шума усилителя действует непосредственно через емкость, порождая шумовой ток, который течет через резистор R2.

Влияние на частотную характеристику изображено на рис. 2.9, и оно также вызывает подъем шумового усиления на высоких частотах. Это происходит на более высоких частотах, чем в базовой схеме преобразователя тока в напряжение, потому что применяется меньшее сопротивление, и этот подъем быстрее прекращается из-за спада частотной характеристики операционного усилителя. Для диода с малой емкостью, использованного в обоих примерах схем, он теперь охватывает небольшую область на графике, что, соответственно, уменьшает влияние шума. Для больших диодов, тем не менее, этот эффект тоже присутствует, как показано штриховой линией для емкости около 200 пФ. Часть спектра, охватываемая подъемом, не находится на верхнем краю полосы пропускания усилителя, как это было в базовой схеме. Следовательно, шум операционного усилителя не стал основным источником.

Рисунок 2.8 — Схема с емкостью фотодиода, добавляющего обратную связь к схеме на рис. 2.6

Ссылка на основную публикацию
Как_определить_коэффициент_уплотнения_щебня
Щебень это распространенный строительный материал, который получается при помощи дробления горной твердой породы. Добывается сырье путем проведения взрывных работ во...
Как_обрезать_виноград_на_зиму_на_урале
Обрезка обычно становится проблемой для начинающих виноградарей, поскольку в этой сфере необходимо знать много нюансов. Придётся самостоятельно принять решение, какие...
Как_обрезать_двухлетнюю_грушу
Обрезка груши занимает особое место в комплексе мероприятий по уходу за этим плодовым деревом. Связано это с тем, что ежегодные...
Как_определить_кпд_источника
В процессе перемещения зарядов внутри замкнутой цепи, источником тока совершается определенная работа. Она может быть полезной и полной. В первом...
Adblock detector