Рамочные_магнитные_антенны_кв_диапазона_своими_руками

Рамочные_магнитные_антенны_кв_диапазона_своими_руками

Опыты с магнитными рамочными антеннами

Опыты с магнитными рамочными антеннами

Александр Грачёв UA6AGW

В прошлом году мне в руки попал 6-ти метровый отрезок коаксиального кабеля. Еготочное название: «Кабель коаксиальный 1″гибкий LCFS 114-50 JA, RFS (15239211)». Он имеет очень небольшой вес, вместо внешней оплётки сплошную гофрированную трубу из безкислородной меди диаметром около 25 мм, центральный проводник – медная трубка
диаметром около 9 мм (см. фото). Это и подвигло меня взяться за постройку рамочной антенны. Об этом я и хочу рассказать.

Первая антенна была построена по схеме DF9IV. При диаметре около 2 м и такой же длине петли питания, выполненной из коаксиального кабеля, она очень хорошо работала на прием, но откровенно плохо на передачу, КСВ достигал 5-6.
Рабочая полоса по приему (на уровне –6 дБ) порядка 10 кГц. При этом она отлично подавляла электрические помехи, при определенной ориентации в пространстве подавление мешающей станции легко получалось более 20 дБ.

После некоторых размышлений я пришел к выводу, что причиной высокого КСВ является использование возбуждающим элементом внутреннего проводника с его относительно небольшим диаметром. Было принято решение внутренний проводник не использовать вовсе, оставив его в виде не замкнутого витка.

Настроечный конденсатор был припаян к внешнему экрану. Приемные характеристики изменились незначительно, менее выраженным стал минимум в диаграмме, стало заметно влияние окружающих предметов. Но на передачу мало что изменилось. Далее после прочтения очередной раз статьи Григорова, было решено снять внешнюю оплетку с кабеля рамки, а медь покрыть в два слоя лаком «ХВ» (более подходящего не нашлось, впрочем, он неплохо защищает медь от
окисления). И тут, наконец, появились первые положительные результаты. КСВ снизился до 1,5, было проведено около 20 местных связей. Антенна находилась на высоте 1,5 м и могла вращаться в вертикальной плоскости.

Для сравнения использовался диполь общей длиной 42,5 м, выполненный из полевого провода с симметричной линией питания из телефонной «лапши» длиной около 20 м (этакая антенна «нищего радиолюбителя»), расположенный на крыше 5-ти этажного дома на высоте около 3-х метров. Он работал на 40 и 80 метрах, запитанный через симметричное согласующее устройство – КСВ на обоих диапазонах = 1,0. К сожалению, антенны находились в разных QTH и не было
возможности провести прямое сравнение. Но опыт эксплуатации диполя в течение года позволял судить об эффективности рамки в первом приближении.

Теперь собственно о результатах: 1) КСВ около 1,5. 2) Все корреспонденты отмечали снижение (от 1 до 2-х балов) уровня моего сигнала, по сравнению с тем, с которым они меня обычно слышат на диполь.

Начавшиеся к этому времени дожди (как говорится: «через день-каждый день»), сделали невозможными дальнейшие антенные эксперименты. Главной причиной невозможности дальнейших испытаний стали постоянные пробои настроечного
конденсатора из-за возросшей влажности воздуха.

Я испробовал, пожалуй, все доступные мне варианты, применял подключение только статорных пластин, соединяя два КПЕ последовательно, применял конденсаторы из коаксиального кабеля, высоковольтные конденсаторы
– все это заканчивалось одним – пробоем. Не попробовал я только вакуумные конденсаторы, остановила их непомерно высокая стоимость.

И вот здесь пришла идея использовать ёмкость по отношению к внешнему экрану незадействованного внутреннего проводника. Попытка рассчитать необходимую длину кабеля по известной погонной ёмкости кабеля, не привела к достоверным результатам, поэтому был использован метод постепенного приближения.

Очень жаль было резать такой замечательный кабель, но «охота – пуще неволи». Схема соединений на рисунке. Для питания использовалась петля из коаксиального кабеля длиной 2 м, по схеме DF9IV, сам питающий 50-омный кабель был длиной 15 м. Можно было предполагать, что общая ёмкость получится в соответствии с формулой последовательно включенных конденсаторов,но настроечный конденсатор является как бы продолжением собственной ёмкости кабеля.
Для настройки использован конденсатор типа «бабочка» от УКВ аппаратуры.

Пробои полностью прекратились, антенна сохранила все основные параметры классической магнитной рамочной антенны, но стала однодиапазонной.

Основные результаты следующие: 1) КСВ порядка 1,5 (зависит от длины и формы питающей петли). 2) Магнитная антенна заметно проигрывает диполю (описан выше) при сопоставимой высоте подвеса. Опыты проводились в диапазоне 80 м.

Заняться дальнейшими опытами с магнитными антеннами меня подтолкнули статья К. Ротхаммеля во втором томе его книги, посвященная магнитным рамкам, и статья Владимира Тимофеевича Полякова о рамочно-лучевой или настоящей ЕН антенне, а для понимания процессов, происходящих в антеннах и вокруг них, оказалась очень полезной статья о ближнем поле антенн.

После прочтения статьи о рамочно-лучевой антенне у меня родилось несколько многообещающих проектов, но в настоящее время испытан только один, о нём и пойдёт речь. Схема антенны изображена на рисунке, внешний вид – на фото:

Все ниже перечисленные опыты проводились в диапазоне 40м. В первых опытах антенна была на высоте 1,5 м от земли. Испробованы различные способы подключения «дипольной» (ёмкостной) части антенны к рамке, но изображенный на рисунке мне показался оптимальным. Здесь предпринята попытка магнитную рамку, излучающую преимущественно магнитную составляющую, дооснастить элементами, излучающими в основном электрическую составляющую.

Читайте также:  Нужно_ли_смазывать_электрогриль_маслом

Можно на эту же антенну посмотреть иначе: катушка, включенная в середину диполя, как бы удлиняет его до необходимых размеров, и вместе с тем лучи, включенные параллельно настроечному конденсатору, обладают собственной емкостью (при указанных размерах порядка 30 — 40 пФ) и входят в общую ёмкость настроечного конденсатора.

Контур, образованный внутренним проводником и конденсатором, кроме того, что повышает уровень сигнала на приеме приблизительно вдвое, по видимому, сдвигает фазу тока собственно рамки, и обеспечивает необходимое фазовое согласование (попытка отключить его приводит к увеличению КСВ до 10 и более). Возможно, мои теоретические рассуждения не совсем верны, но как показали дальнейшие опыты, антенна в данной конфигурации работает.

Ещё при самых первых опытах был замечен интересный эффект – если при неподвижной дипольной части повернуть
рамку на 90 градусов – уровень сигнала по приему падает приблизительно на 10 — 15дБ, а на 180 градусов – прием падает едва ли не до нуля. Хотя логично было бы предположить, что при повороте на 90 градусов диаграммы направленности «дипольной» части и рамки совпадут, но видимо не всё так просто.

Был изготовлен промежуточный вариант антенны, способной поворачиваться вокруг своей оси, с целью выяснить диаграмму направленности, она оказалась такой же, как и у классической рамки. Питание антенны осуществлялось той же петлей связи, что и в первых опытах. В настоящее время антенна поднята на высоту 3-х метров, лучи идут параллельно земле.

1) КСВ = 1.0 на частоте 7050 кГц, 1.5 на 7000кГц, 1,1 на 7100кГц.
2) Антенна не требует перестройки по диапазону. С помощью конденсаторов П-контура трансивера возможна некоторая подстройка антенны в случае необходимости.
3) Антенна весьма компактна.

На расстоянии до 1000 км рамка и диполь имеют приблизительно одинаковую эффективность, а на расстоянии более 1000 км рамка работает заметно лучше волнового диполя при одинаковой высоте подвеса, при этом рамка вчетверо
меньше диполя. Диаграмма направленности близка к круговой, минимумы мало заметны. Проведено около ста связей с 1;2;3;4;5;6;7;9 районами бывшего СССР.

Отмечен интересный эффект – оценка силы сигнала в большинстве случаев оставалась приблизительно одинаковой и при расстоянии до корреспондента 300 км и 3000км, на диполе такого не наблюдалось. Интересна реакция операторов,
когда я сообщал, на чем работаю – изумление, что на этом можно работать! Все опыты проведены на самодельном SDR трансивере с выходной мощность 100 Вт.

Многовитковая рамочная антенна СВ — КВ — УКВ диапазонов.
Активно-пассивная нерезонансная магнитная антенна для широкополосного приёма.

Давайте-ка фразу "Лучшее — враг хорошего" оставим авторам изречения, будь то какой-нибудь там иноземный француз/итальяшка, злобный англосакс, или дикий Тунгус и сын степей калмык. А сами тем временем озадачимся модификацией отлично себя зарекомендовавшей рамочной антенны, подробно описанной на предыдущей странице.

Что позволяет считать описанную конструкцию "отлично себя зарекомендовавшей"? Многочисленные письма, приходящие мне на почту и сдобренные словами благодарности за возможность окунуться в волшебный мир радиоэфира. А также возможность в сложных условиях городских помех потрогать за вымя не только мегаваттного китайского АМ вещателя, но и эпизодичного радиолюбителя с позывным, и даже — свободного шарманщика-нелегала с паяльником в руках и собственной работы антенной в огороде.

На кой нам сдалось её модифицировать? Отвечу — стабильно усложняющейся помеховой обстановкой в городе в совокупности с естественной потребностью хоть как-то увеличить количество принимаемых корреспондентов!
Не знаю как у Вас, но у меня в последнее время в городской квартире с завидной регулярностью КВ диапазон начинает гудеть. Происходит это, как правило, в вечерние часы в полосе частот 3-15МГц с пиком шумовой плотности в районе 7МГц. В такие периоды времени любые типы антенн, кроме магнитных рамок, бессильны справиться со своими возложенными обязанностями. А вот фразу с предыдущей страницы о том, что экранирование рамки (с точки зрения шумовых характеристик) никаких преимуществ не даёт — я забираю обратно. В подобных условиях — очень даже даёт, причём помимо экранирования, возникает и потребность поворота плоскости рамки в такое положение, при котором шумы будут минимальны.

Так, с этим разобрались. А каковы пути дальнейшего улучшения приёмных свойств атенны?
Максимальная эффективность приёмной рамки диаметром около 30см находится в диапазоне частот: начиная с 10МГц и выше. Под эффективностью в данном случае я имею в виду такой параметр, как отношение сигнал/шум принимаемой станции. На более низкочастотных диапазонах для поддержания данного параметра требуется большее количество витков, причём тем большее, чем ниже частота принимаемого сигнала. Именно по такому принципу изменения количества витков на разных диапазонах строятся некоторые конструкции серийных магнитных КВ антенн, в том числе и описанные в статье (ссылка на страницу) "ПРИЁМНЫЕ МАГНИТНЫЕ КВ АНТЕННЫ СОВЕТСКОГО ВОЕНПРОМА". И хотя приведённые рамки являются резонансными, все эти же принципы полностью распространяются и на нерезонансные магнитные антенны.

Читайте также:  Базовая_антенна_27_мгц_своими_руками

Амплитуда сигнала, поступающего с нерезонансной магнитной антенны, вполне достаточна для приёма приличным радиоприёмником с чувствительностью около 1мкВ. В этом случае, учитывая условия сильной зашумлённости КВ эфира в городе, большого смысла в введении антенного усилителя для рамочной антенны нет — вполне достаточно трансформатора для согласования несимметричного входа приёмника с симметричной антенной.
Если приёмник не обладает необходимой чувствительностью, то сигнал может быть без зазрения совести усилен посредством незамысловатой резонансной схемы, приведённой на предыдущей странице (ссылка на страницу).
Сложные схемы усилителей с дифференциальными входами и высоким коэффициентом усиления к ожидаемому улучшению не приводят, мало того, в силу широкополосности легко могут перегрузить смеситель приёмника и "порадовать" радиолюбителя непредвиденными интермодуляционными помехами.
С другой стороны, при наличии неблагоприятных условий в квартире и полном отсутствии балкона в каменных хоромах, может оказаться полезным вынос магнитной рамки на воздух, метра на 1-2 за пределы помещения. Поскольку длина кабеля между антенной и приёмником в данном случае может составлять значительную величину, то степень согласования волновых сопротивлений посредством симметрирующего трансформатора окажется явно недостаточной. Поэтому — при значительной длине коаксиального кабеля необходимость встроенного усилителя обусловлена функцией согласования волновых сопротивлений компонентов для получения приемлемых значений КСВ.

Итак — тезисы выдвинуты, пора переходить к схеме электрической принципиальной.


Рис.1

Для расширения диапазона эффективно принимаемых частот вплоть до среднечастотного диапазона (500кГц) было принято решение увеличить количество витков рамочной антенны до 4-ёх.

Я использовал готовый четырёхжильный кабель ПВС 4*0,75, а в качестве экрана прикупил метр трубы медной отожжённой KME SANCO с внешним диаметром 12мм и толщиной стенок 1мм. Всё это хозяйство в минимальном объёме мне удалось приобрести в интернет магазине https://santshop.ru/, за что ему большое человеческое спасибо. После того как трубка будет свёрнута в кольцо, необходимо её разрезать пополам для того, чтобы организовать 1. 1,5 сантиметровый зазор в экране, в который и будет проникать магнитная составляющая радиосигнала.

Три сдвоенных переключателя S1-S3 коммутируют витки кабеля, соединяя их между собой либо параллельно, либо последовательно, что позволяет таким образом изменять их количество на входе симметрирующего трансформатора Tr1 от 1 до 4.

Посредством переключателя S4 осуществляется выбор режима работы антенны между активным либо пассивным режимами.

Активное звено части усилителя, спрятанное в корпусе антенны, построено несколько нетрадиционно.
Во-первых, оно представляет собой 2 эмиттерных повторителя, включённых параллельно.
Во-вторых, не подразумевает подводимого к нему источника питания и запитывается от нагрузки, находящейся на другом конце кабеля, а конкретно — в составе основной части усилительного устройства.
Что даёт нам такое построение?
А даёт нам это — нормированное выходное сопротивление звена, равное ≈ 26 Омам, что гарантирует параметр КСВ при работе на 50-ти омный коаксиальный кабель, не превышающий 2.
Параллельное включение повторителей на Т1 и Т2, каждый со своей цепью смещения, пришлось использовать вынужденно — в связи со сложностью нахождения радиочастотных p-n-p транзисторов необходимой мощности. Тупо соединять в параллель транзисторы в подобном построении — решение не самое хорошее, так оно чревато повышенными нелинейными, а также интермодуляционными искажениями.
Токи покоя транзисторов (по 10мА каждый) задаются резисторами смещения R1 и R2, номиналы которых необходимо подобрать на финальном этапе настройки схемы.

Как это всё выглядит?


Рис.2

Понятно, что в связи с увеличением количества витков в рамке, трансформатор, который мы мотали на предыдущей странице в соответствии с рекомендациями 1428 (ссылка на страницу) при работе на нижних диапазонах окажется не самым оптимальным.
Налицо — необходимость увеличения индуктивности первичных обмоток. С другой стороны, при работе на верхних диапазонах, когда ко входу трансформатора подключён всего один виток — такое увеличение индуктивности будет нежелательным. Поэтому компромиссным решением следует считать незначительное увеличение индуктивности обмоток (я счёл оптимальным — в 2-3 раза) при сохранении количества витков в обмотках во избежание пропорционального увеличения паразитных ёмкостей трансформатора.
Делается это просто — увеличением размера используемого ферритового сердечника (бинокля). Оценить эти размеры можно по фотографии, приведённой на Рис.2 справа.

Однако пришло время обнародовать схему ответной части усилителя.

Рис.3

Простейший усилитель, приведённый на Рис.3, за счёт введения возможности регулировки усиления обеспечивает лучшие показатели, чем дифференциальные усилители, часто встраиваемые в корпус рамки, без возможности такой регулировки.

Как это работает? Резистор R1 является нагрузочным для эмиттерных повторителей, находящихся в корпусе рамки антенны. Далее следует усилительный каскад, выполненный по схеме с общей базой, на транзисторе Т1, в качестве нагрузки которого выступает резистор R8, зашунтированный дросселем L1.
Переменный резистор R4 выполняет функцию регулировки усиления входного сигнала в пределах 2. 10 раз по напряжению.

Читайте также:  Как_использовать_замороженную_петрушку

Входное сопротивление схемы Rвх определяется величиной параллельно соединённых R1 и суммы сопротивлений: R3, R4 и Rвх каскада с ОБ на транзисторе Т1, т.е. Rвх ≈ R1ll(R3+R4). Легко заметить, что при изменении значения потенциометра R4 в диапазоне 0. 200 Ом, величина входного сопротивления усилителя будет принимать значения от 26 до 107 Ом. А это, в свою очередь, практически во всём диапазоне регулировки уровня обеспечивает параметр КСВ, не превышающий 2 (за исключением незначительного превышения при самом низком уровне усиления).

Ну и наконец, эмиттерный повторитель на транзисторе Т2, работающий при значительном токе покоя, призван согласовать усилительный каскад с 50-омным входным сопротивлением радиоприёмника.

Настройка схемы сводится к подбору резисторов R1 и R2, находящихся внутри антенны (Рис.1).
Делается это следующим образом:
1. К выходу схемы (точка соединения R5 и R6) временно подпаиваем резистор номиналом 240 Ом, второй вывод которого подключаем к источнику питания 12В.
2. Эмиттер транзистора Т2 отключаем от R6. Подбираем значение резистора R1 для получения тока, отдаваемого источником питания — 13мА.
3. Возвращаем подключение эмиттера Т2 к R6. Подбираем значение R2 для получения тока, отдаваемого источником питания — 20мА.
При завершении настройки — токи через транзисторы должны уровняться и установиться на уровне ≈ 10мА через каждый.
4. Отпаиваем резистор номиналом 240 Ом и считаем настройку внутренней части усилителя выполненной.
Ответная часть усилителя должна заработать без всякой настройки, хотя проверить значения напряжений в указанных на схеме точках будет совсем не лишним.

Дроссель L1 следует изготовить самостоятельно на низкочастотном феррите с наружным диаметром 15-20мм. Это необходимо для минимизации завала АЧХ при работе на верхних диапазонах посредством уменьшения количества витков, а соответственно и собственной паразитной ёмкости моточного изделия.

А на следующей странице рассмотрим более серьёзную ответную часть усилителя, обладающую резонансными свойствами и позволяющую достигать максимального усиления без перегрузки входных цепей и смесителя радиоприёмника.

Николай Банщиков RN3KK

воскресенье, 28 июля 2013 г.

Магнитная антенна (рамка) на КВ диапазоны

Всем привет!
Вчера осталось пару часов свободного времени. Решил воплотить давнюю идею — сделать магнитную антенну (магнитная рамка). Тому способствовало появление радиоприемника Degen. Сделав магнитную антенну для радиоприемника Degen, я удивился — она не плохо работает!

Т.к. много спрашивают про эту антенну, размещаю простенький эскиз

Данные рамки

Эскиз магнитной антенны на КВ диапазоны
  • диаметр большой рамки 112 см (трубка от кондиционера или газобалонного оборудования авто), очень удобно и недорого применить гимнастический алюминиевый обруч
  • диаметр малой рамки 22см (материал — медный провод диаметром 2 мм, можно и тоньше, но уже не держит форму сам круг)
  • кабель RG58 подсоединяется к малой рамке напрямую и уходит к радиоприемнику ( можно применить трансформатор 1 к 1, чтобы исключить прием на кабель)
  • КПЕ 12/495х2 (можно применить любой другой, просто изменится полоса рабочих частот)
  • диапазон 2.5 — 18.3 МГц
  • чтобы рамка начала принимать 1.8 МГц добавил параллельно конденсатор 2200 пФ

Идея не нова. Один из вариантов лежит тут. Это одновитковая рамка. У меня получилось нечто следующее

Прием прекрасный даже на 1-м этаже частного дома. Я поражен. Эта простая магнитная антенна (магнитная рамка) имеет селективные свойства. Настройка на НЧ острая, на ВЧ поплавнее. С обычным КПЕ 12/495х2 с одной секцией антенна работоспособна вплоть до диапазона 18 МГц. С подключением второй секции — нижняя граница 2.5 МГц.
Особенно впечатлила работа рамки на диапазоне 7 МГц. Оказывается прекрасная магнитная антенна для Degena.

Что не понятно спрашивайте. de RN3KK

Добавлено 19.06.2014
Вот переехал на новый QTH 9 этаж 9-ти этажного дома. На штатный телескоп приемника Sony TR-1000 принимается значительно меньше станций нежели на магнитную рамку. +очень узкая полоса антенны делает ее прекрасным преселектором. Увы волшебства нет, когда сосед снизу включает свою плазму, прием тухнет везде. даже на 144 МГц.

Добавлено 18.08.2014
Удивлению нет предела. Разместил данную антенну на лоджии 9-го этажа. В диапазоне 40м было слышно очень много Японских станций ( дальность до Японии 7500 км). В диапазоне 80м была принята всего одна японская станция в тот же день. Антенна заслуживает внимания. Я не мог даже и подумать что на эту магнитную антенну ( магнитную рамку) возможен прием дальний трасс..

Добавлено 25.01.2015
Магнитная рамка работает и на передачу. Как бы не казалось странным, но отвечают. Не плохо она работает на 14 МГц, на нижних диапазонах эффективность уже не та — нужно увеличивать диаметр. Даже при мощности 10 Вт, поднесенная энергосберегающая лампа светилась почти в полную силу.

Ссылка на основную публикацию
Размеры_будки_для_карело_финской_лайки
Какой должен быть вольер для лайки Лайка — порода собак, которым требуется простор и активное времяпрепровождение. Наиболее подходящим и комфортным...
Радиус_изгиба_штанги_гнб
Блог о ГНБ и бестраншейных технологиях Блог инженера-строителя по горизонтально направленному бурению. Самые свежие новости и информация о бестраншейных технологиях,...
Размер_вольера_для_ротвейлера
+79295600282 Не дозвонились? Заказ звонка! Не дозвонились? +79295600282 Ваша корзина пуста! С начала 2020 года уже 102 питомцев стали счастливыми...
Разрез_каркасного_дома_чертеж
Чертежи каркасных домов Чертеж каркасного дома — графическое изображение элементов и их соединений, необходимых для строительства каркасного дома. Чертежи каркасных...
Adblock detector