Термоакустический_двигатель_стирлинга_своими_руками

Термоакустический_двигатель_стирлинга_своими_руками

Термоакустический двигатель стирлинга своими руками


Клуб "Крылатское", школа "Интеллектуал":
Василий Кузнецов,
Василий Квитко

Руководитель — Александр Владимирович Ефимов

В развитие работ по двигателям Стирлинга мы обратились к одному интересному двигателю. Предположительно в начале XX — конце XIX века он именовался "двигателем Лемана". В настоящее время его обычно называют словосочетанием Simple Lamina Flow.

Конструкция его достаточно проста. Обычно это стеклянная колба, примерно наполовину заполненная пористым металлическим материалом, которая подогревается спиртовкой на границе наполнителя. На глухой и открытой частях колбы имеются незаполненные наполнителем участки. Со стороны открытого участка расположен поршень с шатуном и маховиком (эксперименты свидетельствуют, что можно использовать свободный поршень и U-образную стеклянную трубку с "жидким поршнем"). Главное условие — поршень должен быть хорошо притерт и иметь минимальное трение о стенки.

Двигатель, в отличие от классического "стирлинга", необходимо "запустить". Для этого нужно или раскрутить маховик, или, если это вариант со свободным поршнем, толкнуть последний внутрь колбы. Возможно, не с первого раза, но двигатель запускается и при размерах 25×156 мм, работает с частотой 6,7 Гц.

При описании работы двигателя авторы, как правило, ссылаются на термоакустический эффект, который можно наблюдать на так называемой "трубке Рийке" (о ней можно прочитать в книге Б.В. Раушенбаха "Вибрационное горение", Москва, 1961). Трубка Рийке представляет собой цилиндр, главная ось которого ориентирована вертикально, с сеткой внутри. Сетку располагают на расстоянии приблизительно четверти высоты цилиндра, считая от основания. Если сетку нагреть достаточно сильно, то возникает сильный звук на частоте, соответствующей второй гармонике. Определить частоту первой гармоники можно по формуле f = a/4l, где а — скорость звука в газе внутри трубки, l — длина трубки. Обязательным условием является наличие сильной тяги (обычно применяют термин "сквозная тяга"). Измеренная на выходе трубки температура поднималась до 100 °С, а частота издаваемого звука для трубки длиной 1 м составила примерно 180 Гц, что соответствует второй гармонике. Звук был настолько сильным, что при диаметре трубки около 70 мм начинали дрожать оконные стекла. При некотором навыке удается извлечь звук практически из любой трубки. Трубка меньшего диаметра (0,02…0,018 м) и меньшей длины (0,5 м) издает звук на частоте около 333 Гц, что также соответствует второй гармонике. Скорость движения воздуха, измеренная по кино-грамме, составила 1,2 м/с (в области, предшествующей появлению звука, — 0,4…0,7 м/с). Теоретически для возникновения акустических колебаний требуется скорость движения воздуха не менее 0,6…0,7 м/с и удлинение трубки не менее 14 калибров. В наших экспериментах удавалось извлечь звук из трубок с относительными длинами от 11 до 27 калибров.

Причина возникновения звука в "трубке Рийке" заключается в следующем. Раскаленная сетка обеспечивает нагрев воздуха и он, обладая меньшей плотностью, устремляется вверх; при этом в области сетки устанавливается некоторая скорость движения воздуха. Воздушная "пробка" более легкого воздуха достигает среза трубки, в результате вниз по потоку начинает двигаться звуковая волна (возмущение). Достигнув сетки, волна (область повышенного давления) вызывает местное увеличение плотности и, как следствие, снижение скорости потока. Снижение скорости потока приводит к увеличению времени пребывания воздуха возле сетки и появлению нового "теплого пузыря" воздуха, который снова движется вверх. Если сетка оказывается в пучности стоячей звуковой волны, то возникают самоподдерживающиеся автоколебания.

Если трубка расположена горизонтально, то для возникновения звуковых колебаний нужно прокачивать через трубку воздух с указанной ранее скоростью. При этом реализуется механизм, обусловленный наличием "термического сопротивления". В области подвода тепла происходит местное снижение плотности воздуха и местное же увеличение скорости. Это приводит к росту давления перед нагревателем, так как расход воздуха остается неизменным. В свою очередь, рост давления вызывает увеличение скорости движения воздуха в области нагревателя. Температура нагревателя уменьшается, при этом термическое сопротивление также падает. Скорость движения воздуха начинает уменьшаться, а температура нагревателя — расти, вследствие чего цикл повторяется.

В работающих моделях термоакустических двигателей нагреватель также располагается на расстоянии одной трети — одной четвертой части полной длины трубки, со стороны открытого конца. Однако измеренная частота движения поршня существенно, в нашем случае в 30…50 раз, меньше частоты звучания "трубки Рийке". Следовательно, если акустические явления и присутствуют в данном двигателе, то носят они другой характер. Однако аналогия с горизонтально расположенной трубкой нам видится справедливой.

Читайте также:  Регулятор_мощности_на_atmega8

Предложим следующее описание принципа работы термоакустического двигателя. Для приведение в действие ему нужен первичный толчок, т.е. резкое перемещение поршня, например, в сторону закрытого конца. При этом часть воздуха приходит в движение, и впереди поршня движется волна давления, скорость которой равна скорости звука. В движение вовлекаются новые части воздуха и, наконец, поток достигает границы наполнителя. Воздух в наполнителе и возле него горячий, так как постоянно подогревается спиртовкой. Теперь учтем некоторые особенности конструкции термоакустического двигателя:
— наполнитель имеет низкую теплопроводность и теплоемкость;
— мощность нагревателя недостаточна для быстрого нагрева наполнителя.

Вследствие этого горячий воздух будет "выдавливаться" из прогреваемого наполнителя в его холодную часть и начнет остывать. Разумеется, температура холодной части наполнителя несколько повысится. Следовательно, движение поршня в сторону закрытого конца первоначально не вызовет увеличения давления, а даже приведет к падению последнего. Но скорость движения воздуха будет снижаться, и та его порция, которая попала в горячую часть наполнителя, станет прогреваться. Давление газа будет увеличиваться. Поршень двинется в обратном направлении. По мере выталкивания поршня в сторону открытого конца холодный воздух начнет попадать в горячую часть, что первоначально приведет к росту давления. Однако из-за малой теплоемкости наполнителя нагретая часть остынет, а мощности нагревателя не хватит для поддержания постоянной температуры. Начнется обратный процесс — падение давления и новый цикл.

При отсутствии подогрева и охлаждения газа поршень и замкнутая трубочка ведут себя как подпружиненная масса. Только жесткость псевдо-пружины — объема газа — будет переменной.

Решение дифференциального уравнения движения поршня приводит к затухающей периодической функции.

Зная положение поршня, и, следовательно, закон изменения объема, можно определить значение давления, считая, например, процесс изотермическим (в случае U-образной трубки). При характерных размерах двигателя: длине 500 мм, диаметре 22 мм, ходе поршня 200 мм и объеме 0,001627 м 3 получим относительное изменение давления Рмахмин = 1,01955, где Рмах = Ратм + ΔР; Рмин = Ратм — ΔР; Ратм — атмосферное давление. ΔР = 100 мм вод. столба.

Если принять процесс изобарным (в случае свободного поршня), то изменение температуры составит Тмахмин = 1,0478, где Тмах = Тср + ΔТ; Тмин = Тср — ΔТ; ΔТ = 6,7°С.

Исследованный вариант двигателя, с жидкостью, качающейся в U-образной трубке, наиболее прост для понимания принципа работы. Измеренное значение изменения давления в термоакустическом двигателе, в котором роль поршня играла U-образная трубка с водой, составило 200 мм водяного столба. Возвратное движение жидкого столба вызвано действием силы тяжести.

Если рассматривать трубку с колбой на конце как резонатор Гельмгольца, то его собственная частота составит 40 Гц. Температура в холодной части двигателя, в тех экспериментах где происходило измерение, монотонно, с градиентом

1,5 °С возрастала. Температура в горячей части "стабилизировалась" на уровне 130 °С. Более точной формулировки дать не удается, для этого желательно было бы измерять температуру с частотой более 1 Гц. Измеренная частота колебаний столба жидкости отлична от собственных частот элементов двигателя и составила f =1,39Гц.

В случае движущегося свободного поршня остается открытым вопрос, почему начинает падать давление (при втягивании поршня внутрь трубки давление, разумеется, падает). Причина повышения давления понятна, а вот падение вызывает некоторые вопросы. Возможно, объяснение можно найти, если привлечь инерционные свойства поршня. В крайних точках, при максимальном и минимальном продвижении поршня внутрь колбы, последний сдвигается несколько дальше, чем если бы он не обладал инерцией. При максимальном продвижении поршня ввиду малой теплоемкости рекуператора воздух перестает охлаждаться и начинает нагреваться. При минимальном продвижении поршня масса холодного воздуха отнимает все запасенное тепло в рекуператоре, и тот охлаждается. Вследствие разности давлений поршень начинает вытеснять воздух в холодную часть и процесс повторяется .

Мощный двигатель Стирлинга своими руками

Двигатель Стирлинга, некогда известный, был надолго забыт из-за широкого распространения другого мотора (внутреннего сгорания). Но сегодня о нем слышно все больше. Может быть, у него есть шансы стать более популярным и найти свое место в новой модификации в современном мире?

Читайте также:  Экопоселения_в_ростовской_области

История

Двигатель Стирлинга — это тепловая машина, которая была изобретена в начале девятнадцатого века. Автором, как понятно, был некий Стирлинг по имени Роберт, священник из Шотландии. Устройство представляет собой двигатель внешнего сгорания, где тело движется в замкнутой емкости, постоянно меняя свою температуру.

Из-за распространения другого вида мотора о нем почти забыли. Тем не менее, благодаря своим преимуществам, сегодня двигатель Стирлинга (своими руками многие любители сооружают его дома) снова возвращается.

Основное отличие от двигателя внутреннего сгорания заключается в том, что энергия тепла приходит извне, а не вырабатывается в самом двигателе, как в ДВС.

Принцип работы

Можно представить замкнутый воздушный объем, заключенный в корпусе, имеющем мембрану, то есть поршень. При нагревании корпуса воздух расширяется и совершает работу, выгибая таким образом поршень. Затем происходит охлаждение, и он вгибается снова. В этом состоит цикл работы механизма.

Немудрено, что термоакустический двигатель Стирлинга своими руками многие изготавливают в домашних условиях. Инструментов и материалов для этого требуется самый минимум, который найдется в доме у каждого. Рассмотрим два разных способа, как легко его создать.

Материалы для работы

Чтобы сделать двигатель Стирлинга своими руками, понадобятся следующие материалы:

  • жесть;
  • спица из стали;
  • трубка из латуни;
  • ножовка;
  • напильник;
  • подставка из дерева;
  • ножницы по металлу;
  • детали крепежа;
  • паяльник;
  • пайка;
  • припой;
  • станок.

Это все. Остальное — дело нехитрой техники.

Как сделать

Из жести готовят топку и два цилиндра для базы, из которых будет состоять двигатель Стирлинга, своими руками изготовленный. Размеры подбирают самостоятельно, учитывая цели, для которых предназначено это устройство. Предположим, что мотор делается для демонстрации. Тогда развертка главного цилиндра составит от двадцати до двадцати пяти сантиметров, не более. Остальные части должны подстраиваться под него.

На верху цилиндра для передвижения поршня делают два выступа и отверстия диаметром от четырех до пяти миллиметров. Элементы выступят в роли подшипников для расположения кривошипного устройства.

Далее делают рабочее тело мотора (им станет обычная вода). К цилиндру, который сворачивают в трубу, припаивают кружочки из жести. В них проделывают отверстия и вставляют трубки из латуни от двадцати пяти до тридцати пяти сантиметров в длину и диаметром от четырех до пяти миллиметров. В конце проверяют, насколько герметичной стала камера, залив ее водой.

Далее приходит черед вытеснителя. Для изготовления берут заготовку из дерева. На станке добиваются, чтобы она обрела форму правильного цилиндра. Вытеснитель должен быть немногим меньше диаметра цилиндра. Оптимальную высоту подбирают уже после того, как двигатель Стирлинга своими руками будет сделан. Потому на данном этапе длина должна предполагать некоторый запас.

Спицу превращают в шток цилиндра. По центру деревянной емкости делают отверстие, подходящее под шток, вставляют его. В верхней части штока необходимо предусмотреть место для шатунного устройства.

Затем берут трубки из меди длиной четыре с половиной сантиметра и диаметром два с половиной сантиметра. Кружок из жести припаивают к цилиндру. По бокам на стенках делают отверстие для сообщения емкости с цилиндром.

Поршень также подгоняют на токарном станке под диаметр большого цилиндра изнутри. Наверху подсоединяют шток шарнирным способом.

Сборку заканчивают и настраивают механизм. Для этого поршень вставляют в цилиндр большего размера и соединяют последний с другим цилиндром меньшего размера.

На большом цилиндре сооружают кривошипно-шатунный механизм. Фиксируют часть двигателя при помощи паяльника. Основные части закрепляют на деревянном основании.

Цилиндр наполняют водой и под низ подставляют свечку. Двигатель Стирлинга, своими руками сделанный от начала и до конца, проверяют на работоспособность.

Второй способ: материалы

Двигатель можно сделать и другим способом. Для этого понадобятся следующие материалы:

Как сделать

Поролон очень часто используют, чтобы сделать дома простой не мощный двигатель Стирлинга своими руками. Из него готовят вытеснитель для мотора. Вырезают поролоновый круг. Диаметр должен быть немного меньше, чем у консервной банки, а высота — чуть более половины.

По центру крышки проделывают отверстие для будущего шатуна. Чтобы он ходил ровно, скрепку сворачивают в спиральку и паяют к крышке.

Поролоновый круг посередине пронизывают тонкой проволокой с винтом и фиксируют его сверху шайбой. Затем соединяют кусок скрепки пайкой.

Читайте также:  Как_сшить_грибы_из_ткани_своими_руками

Вытеснитель вталкивают в отверстие на крышке и соединяют банку с крышкой путем пайки для герметизации. На скрепке делают маленькую петлю, а в крышке — еще одно, более крупное отверстие.

Жестяной лист сворачивают в цилиндр и спаивают, а потом прикрепляют к банке настолько, чтобы щелей не осталось совсем.

Скрепку превращают в коленчатый вал. Разнос при этом должен быть ровно девяносто градусов. Колено над цилиндром делают слегка больше другого.

Остальные скрепки превращаются в стойки для вала. Делается мембрана следующим образом: цилиндр оборачивают в пленку из полиэтилена, продавливают и крепят ниткой.

Шатун изготавливается из скрепки, которую вставляют в кусок резины, и готовую деталь прикрепляют к мембране. Длина шатуна делается такой, чтобы в нижней валовой точке мембрана была втянутой в цилиндр, а в высшей — вытянута. Таким же образом делается и вторая деталь шатуна.

Затем один приклеивают к мембране, а другой — к вытеснителю.

Ножки для банки можно также сделать из скрепок и припаять. Для кривошипа используют CD-диск.

Вот и готов весь механизм. Осталось лишь под него подставить и зажечь свечку, а затем дать толчок через маховик.

Заключение

Таков низкотемпературный двигатель Стирлинга (своими руками сооруженный). Конечно, в промышленных масштабах такие приборы изготавливаются совсем другим способом. Однако принцип остается неизменным: происходит нагрев, а затем охлаждение воздушного объема. И это постоянно повторяется.

Напоследок посмотрите эти чертежи двигателя Стирлинга (своими руками его можно сделать без особых навыков). Может быть, вы уже загорелись идеей, и вам захочется сделать что-либо подобное?

ТЕРМОАКУСТИКА ЗАНИМАТЕЛЬНАЯ ФИЗИКА ГЕНЕРАТОР ТЕРМОАКУСТИЧЕСКИЙ ДВИГАТЕЛЬ СТИРЛИНГА ИГОРЬ БЕЛЕЦКИЙ

Термоакустика своими руками. Эффектные опыты по преобразованию внешнего тепла в механические колебания воздуха или звук. Генератор звука и термоакустический двигатель в одном устройстве. Занимательная физика доступная каждому, присоединяйтесь 🙂

Если Вас затронуло это видео поддержите его лайком, или оставьте отзыв, мне очень важна Ваша поддержка. Сделайте его репост в соцсетях.

Меня зовут Игорь Белецкий. Я давно увлекаюсь техническим творчеством и популяризацией науки в интернете. Мои видео говорят сами за себя. Сегодня я посвящаю этому занятию все свое время, превратив хобби в работу.
Только благодаря финансовой поддержке постоянных зрителей, мои ролики бесплатны для всех, и я хочу, чтобы так было всегда.

Но учитывая не стабильную экономическую (и прочую) обстановку в стране, хочу обратиться к новым зрителям – окажите (у которых есть возможность конечно) любую благотворительную помощь моим экспериментам.

Это позволит мне поддерживать материальную базу и арендовать помещение для работы. А также, снимать ролики чаще и делать их ещё интереснее. Моя цель выпускать новый ролик каждую неделю.

Я очень надеюсь, что мой проект продолжит существование в этот не простой период грязных политических игр, войн и мракобесия.

WebMoney ( U333875824154; Z287234330137; R287776577874 )

Яндекс деньги 410011260810394

Карта Приват Банка 5168 7423 4754 5463

По системе https://www.liqpay.com/ru на мой личный телефон (+38) 067- 393-13- 82

Или любым частным переводом на меня лично, Украина, г.Харьков, BELETSKIY IGOR LEONIDOVICH
Подписывайтесь, заказывайте эксперименты, принимайте активное участие в жизни
моего канала. Мой сайт http://www.physicstoys.narod.ru , почта Physicstoys@yandex.ru

Спасибо всем тем, кто уже протянул руку помощи и не позволил проекту развалиться ещё в начале этого года.

Я исследую физические явления, проверяю теории и демонстрирую результат.
Станьте свидетелем чудесного преобразования энергии из одного вида в другой. Занимательная физика, научные эксперименты, эффектные опыты, технические самоделки, идеи, гипотезы, изобретения и разоблачения.
Двигатель Стирлинга, паровой двигатель, паровая турбина, генератор электричества, электрогенератор, магнетизм, магнитная левитация, магнитный двигатель, магнитный подшипник, магнитный подвес, маховик накопитель энергии, супермаховик, водяной насос, концентратор солнечных лучей, паровая пушка, паровая ракета, вечный двигатель, свободная энергия и многое другое.
Stirling engine, Steam engine, Steam Turbine, Generator, Linear Electric Generator, Free Piston Engine, Steam Machine, Thermal Lag Engine, Harwell Thermomechanical Generator TMG, Thermoacoustic Stirling engine, Magnetic Bearing, Magnetic Levitation, Solar concentrator, perpetuum mobile, magnet motor, free energy, water pump.

Видео ТЕРМОАКУСТИКА ЗАНИМАТЕЛЬНАЯ ФИЗИКА ГЕНЕРАТОР ТЕРМОАКУСТИЧЕСКИЙ ДВИГАТЕЛЬ СТИРЛИНГА ИГОРЬ БЕЛЕЦКИЙ канала Игорь Белецкий

Ссылка на основную публикацию
Съемник_для_масляного_фильтра_тойота
Toyota Prius ZVW30/35 Wiki › Бортжурнал › Съёмник крышки масляного фильтра Toyota Тойота применяет крышки фильтра на 14 граней 64.5mm,...
Схема_трубки_для_прозвонки_кабеля
Схема трубки для прозвонки кабеля Это приспособление трудно назвать прибором или даже инструментом. Тем не менее, телефонисты с его помощью...
Схема_электроподжига_газовых_плит
Устройство автоматического электроподжига газовых плит История газовых плит берет свое начало в далеком 1825 году. Тогда работник газовой фабрики Джеймс...
Теплый_пол_на_монолитной_плите
Пирог тёплого пола и его строение на разные типы оснований Сегодня, многие выбирают для отопления жилья систему «тёплый пол», даже...
Adblock detector